AITTAC # Linear Guide(2023B) Europe - **OLSH Series Standard Linear Guide** - ●LSD Series Low Profile Type Linear Guide - LRW Series Miniature Linear Guide (Widened) - LRM Series Miniature Linear Guide - **LGC Series Crossed Roller Way** # **AirTAC** • Linear Guide # **Products Catalog-2023B** LSH Series Standard Linear Guide LSD Series Low Profile Type Linear Guide LRW Series Miniature Linear Guide (Widened) LGC Series Crossed Roller Way # **AirTAC International Group** # **Corporate Profile** 2019: AirTAC Ningbo the second Production base established 2018: AirTAC USA established Annual revenue over the years 2016-2018: AirTAC(Guangdong/Tianjin /Fujian) Intelligent Company established 2012-2015: AirTAC Singapore, AirTAC Japan, AirTAC Malaysia, AirTAC Thailand established 2015: AirTAC (Jiangsu) established 2010: AirTAC IPO In Taiwan (Stock code:1590.TW) 2008: AirTAC Italy established 2016: New production base of AirTAC Tainan established 2002: AirTAC Ningbo established 1988: AirTAC Taiwan established 1998: AirTAC Guangdong established # A # **AirTAC International Group** # **Corporate Profile** # 2019 AirTAC Ningbo the second Production base established AirTAC Ningbo the second Production base Land area: 266,667m² Add: No.89, Nandu Rd., Fenghua District, Ningbo, Zhejiang, China # 2016 New production base of AirTAC Tainan established Taiwan Tainan Production base Land area: 71,333m² Add: No.28, Kanxi Rd., Xinshi District, Tainan, Taiwan # 2002 AirTAC Ningbo established AirTAC Ningbo the first Production base Land area: 240,000m² Add: No.88, Siming E. Rd., Fenghua District, Ningbo, Zhejiang, China # 1998 AirTAC Guangdong established AirTAC Guangdong Land area: 26,667m² Add: No.7, Kaixuan Rd., Nanhai District, Foshan, Guangdong, China # A # **AirTAC International Group** # **Manufacturing Equipment** Injection molding Equipment Array (Japan-made) Cryogenic-treatment Equipment Machining Equipment Array(Japan-made) EFD Induction Hardening Equipment (Norway-made) IPSEN Carburising Equipment(Germany-made) Grinding Machine Array Auto-assembly Line # **AirTAC International Group** # Detection Equipment R&D Experimental Equipment Zeiss Coordinate Measuring Machine(CMM)(Germany-made) Rail Accuracy Classification Equipment Chemical Analysis Equipment Metallographic Analysis (Japan-made) Hardness Detection Equipment (Netherlands-made) Linear guide accuracy Measurement Equipment Linear guide life span Test Equipment Linear guide complex performance Test Equipment Renishaw Equator # A # **AirTAC International Group** # **Global Network of Marketing&Service** AirTAC International Group has more than 100 direct sales branches/sales sections in Chinese mainland, and thousands of distributors around the world, mainly located in Europe, the United States and Asia, etc., forming a perfect sales network and after-sales service system, which can provide customers with convenient services at any time. ## Overseas Market - ●USA - Japan - ●UK - France - Finland - Germany - ●Thailand - ●Korea - Australia - ●Mexico - Argentina - South Africa - Italy - Singapore - Malaysia - ●Greece - Sweden - Denmark - India - Brazil - Netherlands - Sri Lanka - ●Colombia - Jordan - VietNam - Indonesia - Israel - •Turkey - ●Kuwait - ●Austria - •Saudi Arabia - ●Peru - ●Canada - ●Iran - ●Syria . . . # Linear Guide——Index **Linear Guide Selection** P2 #### LSH Series Standard Linear Guide P10 - Standard type(N) and Long type(L) are available, one block and two blocks type are available - ●Square type(H), Flange type top-mount(F1), Flange type bottom-mount(F2), Flange type top or bottom mount(F3) block are available ●LSH15、20、25、30、35、45; ●Block with double oil scrapers(DD) or oil scraper+metal scraper(ZZ) type are available # LSD Series Low Profile Type Linear Guide ●Short type(S) and Standard type(N) are available, one block and two blocks type are available - ●Square type(H), Flange type top-mount(F1), Flange type bottom-mount(F2), Flange type top or bottom mount(F3) block are available - ●LSD15、20、25、30、35; - Block with double oil scrapers(DD) or oil scraper+metal scraper(ZZ) type are available # LRW Series Miniature Linear Guide (Widened) P46 P53 - ●Standard type(N) and Long type(L) are available, one block and two blocks type are available - ●LRW7、9、12、15 #### **LRM Series Miniature Linear Guide** ●Standard type(N) and Long type(L) are available, one block and two blocks type are available ●LRM5、7、9、12、15。 # **LGC Series Crossed Roller Way** Accuracy class: High-accuracy and precision grade are available - Three-row type and four-row type are available - ●Roller diameter: Φ1.5、Φ2、Φ3、Φ4、Φ6 P27 #### How to select Linear Guide # **Load Capacity and Rating Life** #### 1. Basic static load rating (C₀) When a linear guide absorbs a large force or impact in a static or low-speed movement, it will cause permanent deformation either on rollers and groove. When sum of deformation on groove and rollers exceeds a certain limit, it will affect the smoothness of its linear movement. Basic static load rating is defined as the magnitude of a given stress applied at where the stress is the biggest caused the sum of permanent deformation on groove and roller is 1/10000 of the diameter of the rollers. #### 2. Allowable static moment(M₀) When torque is applied on a linear guide, rollers in the both ends of block will endure the major stress force. Allowable static moment is defined as a given moment applied and raised stress force on linear guide which will cause sum of permanent deformation on groove and roller is 1/10000 of the diameter of the rollers. Static moment is defined in three directions as M_P, M_y, M_B. #### 3. Static safety factor(f_c) During vibration, impact or sudden start and stop, the inertia force or torque will raise huge loads on linear guide. For this kind of situation, it is necessary to put static safety factor into consideration. Static safety factor is a ratio of the basic statics load rating to the calculated working load as shown in following formula. The reference of static safety factor for different conditions is shown in following table: | Use machinery | Load condition | $f_{ m s}$ | |--------------------|----------------------------------|------------| | General industrial | General load conditions | 1.0~1.3 | | machinery | When there is vibration or shock | 2.0~3.0 | | Machine tool | General load conditions | 1.0~1.5 | | wachine tool | When there is vibration or shock | 2.5~7.0 | $$f_s = \frac{C_\theta}{P} \text{ or } f_s = \frac{M_\theta}{M}$$ f_s : Static safety factor C_o : Basic static load rating (N) $M_{\scriptscriptstyle 0}$: Allowable static moment $(N \cdot m)$ P: Calculation load (N) M: Calculation moment $(N \cdot m)$ #### 4. Basic dynamic load rating(C) Basic Dynamic Load rating is defined as the maximum allowable load and can be applied on the same specification of linear guides. This will result in a nominal life of 50 KM operation for linear guide. #### 5. Life calculation #### Life When a linear guide is with bearings loaded during operation, the groove and rollers will constantly endure stress force. Once reaching fatigue, the surface will peel off and damage. The life of a given linear guide is defined as the moving distance of a linear guide in which peeling occurs due to fatigue. #### Nominal life Actual lifespan of linear guide varies enormously. The lifespan of each guide can be different even though they come from the same product batch under the same condition. Therefore, nominal life is usually chosen as bench mark to evaluate lifespan. Nominal life is defined as the moving distance for 90% of linear guides from the same production batch which can perform under the same working condition without peeling. #### Life factor ## 1. Hardness factor($f_{\scriptscriptstyle \rm H}$) Surface hardness of rollers must be HRC 58~62. A softer hardness will reduce load-bearing performance and static load rating. Therefore allowable moment must be multiplied by a hardness factor as correlation shown on the right chart. Our hardness requirement for linear guide is HRC58~62, therefore $f_{\rm H}$ = 1.0. #### 2. Temperature factor($f_{\scriptscriptstyle { m T}}$) High temperature environment will affect lifespan of the linear guide. Therefore, static load rating and allowable moment must be multiplied by a temperature factor $f_{\rm T}$ as correlation shown on the right graph. Certain parts of our linear guide are made of plastic and rubber, hence working in temperature higher than 100°C is not recommended. #### 3. Load factor(f_*) Although loads on a given linear guide can be calculated, it will usually come with vibration or hitting in actual use. This makes actual loads higher than calculated figure. Hence, in heavy vibration or hitting condition, please divide basic dynamic load rating (C) by following empirical load factor. | Working Conditions | Use speed | $f_{ m w}$ | |-------------------------------|----------------------|------------| | Smooth without impact | V≤15m/min | 1.0~1.2 | | Common impact and vibration | 15m/min < V≤60m/min | 1.2~1.5 | | Moderate impact and vibration | 60m/min < V≤120m/min | 1.5~2.0 | | Strong impact and vibration | V≥120m/min | 2.0~3.5 | #### 4. Contact factor(f_c) When multiple blocks on the linear guide are used in close contact with each other, it is difficult to evenly distribute the load due to moment torque or the accuracy of the mounting surface. Hence, when using multiple blocks in close contact, multiply the basic load rating (C or C0) by the corresponding contact factor in the table below Note: Take into account the contact factor in the table below if uneven load distribution is expected in a large machine. | Number of blocks used in close contact | 2 | 3 | 4 | 5 | ≥6 | Normal use | |--|------|------|------|------|-----|------------| | Contact factor f _c | 0.81 | 0.72 | 0.66 | 0.61 | 0.6 | 1 | #### •Calculation of nominal
life(L) The nominal life will vary based on applied load. Hardness and working temperature will also have great effects on lifespan of a linear guide. Putting all factors into consideration, nominal life can be calculated by following formula: L: Nominal life (km) $$L = \left(\frac{f_H \times f_T \times f_C}{f_W} \times \frac{C}{P}\right)^3 \times 50Km$$ C: Basic dynamic load rating (N) P: Workload (N) $f_{\rm w}$: Load factor $f_{\!\scriptscriptstyle H}$: Hardness factor $\mathbf{f}_{\scriptscriptstyle T}$: Temperature factor f.: Contact factor #### •Calculation of service life time(L_h) If stroke length and repeating time are known, service life time (L_h) can be derived based on rated life (L) $$L_h = \frac{L \times 10^3}{2 \times l_s \times n_1 \times 60}$$ L_h : Service life time (hr) L: Rated life (km) l_s : Stroke length (m) n_i : Rounds per minute (min^{-1}) # Calculation of working load Load effect on a linear guide will be affected by its center of mass, position of thrust and inertia force occurring by acceleration when starting or stopping, etcetera. Therefore, most applications of working conditions must be put into consideration in order to acquire accurate nominal life. #### Working load calculation | Туре | Operation condition | Load on each block | |---|--|---| | Horizontal use
uniform motion
Or at rest | | $P_{i} = \frac{F}{4} + \frac{Fl_{3}}{2l_{1}} - \frac{Fl_{4}}{2l_{2}}$ $P_{2} = \frac{F}{4} - \frac{Fl_{3}}{2l_{1}} - \frac{Fl_{4}}{2l_{2}}$ $P_{3} = \frac{F}{4} - \frac{Fl_{3}}{2l_{1}} + \frac{Fl_{4}}{2l_{2}}$ $P_{4} = \frac{F}{4} + \frac{Fl_{3}}{2l_{1}} + \frac{Fl_{4}}{2l_{2}}$ | | Horizontal cantilever use
uniform motion
Or at rest | P ₁ P ₂ P ₃ | $P_{i} = \frac{F}{4} + \frac{Fl_{s}}{2l_{i}} + \frac{Fl_{s}}{2l_{2}}$ $P_{2} = \frac{F}{4} - \frac{Fl_{s}}{2l_{i}} + \frac{Fl_{s}}{2l_{2}}$ $P_{3} = \frac{F}{4} - \frac{Fl_{s}}{2l_{i}} - \frac{Fl_{s}}{2l_{2}}$ $P_{4} = \frac{F}{4} + \frac{Fl_{s}}{2l_{i}} - \frac{Fl_{s}}{2l_{2}}$ | | Vertical use
uniform motion
Or at rest | P_{i1} P_{i1} P_{i2} P_{i3} P_{i4} P_{i5} P | $P_{i}=P_{2}=P_{3}=P_{4}= rac{Fl_{3}}{2l_{1}}$ $P_{i,\tau}=P_{2,\tau}=P_{3,\tau}=P_{4,\tau}= rac{Fl_{4}}{2l_{1}}$ | | Wall-mounted use
uniform motion
Or at rest | $\begin{array}{c} I_1 & P_{2T} \\ P_2 & P_2 \\ P_{3T} & P_{3T} \end{array}$ | $P_{1}=P_{2}=P_{3}=P_{4}=\frac{Fl_{4}}{2l_{2}}$ $P_{1T}=P_{4T}=\frac{F}{4}+\frac{Fl_{3}}{2l_{1}}$ $P_{2T}=P_{3T}=\frac{F}{4}-\frac{Fl_{3}}{2l_{1}}$ | | Туре | Operation condition | Load on each block | |---|--|--| | Lateral Slope | P_3 P_3 P_4 P_5 | $\begin{split} P_{i} &= \frac{F \cdot \cos\theta}{4} + \frac{F \cdot \cos\theta \cdot l_{i}}{2 \cdot l_{i}} - \frac{F \cdot \cos\theta \cdot l_{i}}{2 \cdot l_{i}} + \frac{F \cdot \sin\theta \cdot h_{i}}{2 \cdot l_{i}} \\ P_{2} &= \frac{F \cdot \cos\theta}{4} - \frac{F \cdot \cos\theta \cdot l_{i}}{2 \cdot l_{i}} - \frac{F \cdot \cos\theta \cdot l_{i}}{2 \cdot l_{i}} + \frac{F \cdot \sin\theta \cdot h_{i}}{2 \cdot l_{i}} \\ P_{3} &= \frac{F \cdot \cos\theta}{4} - \frac{F \cdot \cos\theta \cdot l_{i}}{2 \cdot l_{i}} + \frac{F \cdot \cos\theta \cdot l_{i}}{2 \cdot l_{i}} - \frac{F \cdot \sin\theta \cdot h_{i}}{2 \cdot l_{i}} \\ P_{4} &= \frac{F \cdot \cos\theta}{4} + \frac{F \cdot \cos\theta \cdot l_{i}}{2 \cdot l_{i}} + \frac{F \cdot \cos\theta \cdot l_{i}}{2 \cdot l_{i}} - \frac{F \cdot \sin\theta \cdot h_{i}}{2 \cdot l_{i}} \\ P_{17} &= P_{47} = \frac{F \cdot \sin\theta}{4} + \frac{F \cdot \sin\theta \cdot l_{i}}{2 \cdot l_{i}} \\ P_{27} &= P_{37} = \frac{F \cdot \sin\theta}{4} - \frac{F \cdot \sin\theta \cdot l_{i}}{2 \cdot l_{i}} \end{split}$ | | Axial Slope | | $\begin{split} P_{i} &= \frac{F \cdot cos\theta}{4} + \frac{F \cdot cos\theta \cdot l_{s}}{2 \cdot l_{i}} - \frac{F \cdot cos\theta \cdot l_{s}}{2 \cdot l_{s}} + \frac{F \cdot sin\theta \cdot h_{i}}{2 \cdot l_{i}} \\ P_{i} &= \frac{F \cdot cos\theta}{4} - \frac{F \cdot cos\theta \cdot l_{s}}{2 \cdot l_{i}} - \frac{F \cdot cos\theta \cdot l_{s}}{2 \cdot l_{s}} - \frac{F \cdot sin\theta \cdot h_{i}}{2 \cdot l_{i}} \\ P_{i} &= \frac{F \cdot cos\theta}{4} - \frac{F \cdot cos\theta \cdot l_{s}}{2 \cdot l_{i}} + \frac{F \cdot cos\theta \cdot l_{s}}{2 \cdot l_{s}} - \frac{F \cdot sin\theta \cdot h_{i}}{2 \cdot l_{i}} \\ P_{i} &= \frac{F \cdot cos\theta}{4} + \frac{F \cdot cos\theta \cdot l_{s}}{2 \cdot l_{i}} + \frac{F \cdot cos\theta \cdot l_{s}}{2 \cdot l_{s}} +
\frac{F \cdot sin\theta \cdot h_{i}}{2 \cdot l_{i}} \\ P_{i,T} &= P_{i,T} = + \frac{F \cdot sin\theta \cdot l_{s}}{2 \cdot l_{i}} \\ P_{2T} &= P_{j,T} = - \frac{F \cdot sin\theta \cdot l_{s}}{2 \cdot l_{i}} \end{split}$ | | Use horizontally
with inertial force | | When accelerating When decelerating $P_{i} = P_{4} = \frac{mg}{4} - \frac{m \cdot a_{i} \cdot l_{s}}{2 \cdot l_{i}} \qquad P_{i} = P_{4} = \frac{mg}{4} + \frac{m \cdot a_{i} \cdot l_{s}}{2 \cdot l_{i}}$ $P_{2} = P_{3} = \frac{mg}{4} + \frac{m \cdot a_{i} \cdot l_{s}}{2 \cdot l_{i}} \qquad P_{2} = P_{3} = \frac{mg}{4} - \frac{m \cdot a_{i} \cdot l_{s}}{2 \cdot l_{i}}$ $P_{i,\tau} = P_{2\tau} = P_{s,\tau} = P_{s\tau} = \frac{m \cdot a_{i} \cdot l_{s}}{2 \cdot l_{i}} \qquad P_{i,\tau} = P_{2\tau} = P_{s\tau} = P_{s\tau} = \frac{m \cdot a_{s} \cdot l_{s}}{2 \cdot l_{i}}$ At constant speed $P_{i} = P_{2} = P_{3} = P_{4} = \frac{mg}{4}$ | | Use Vertically
with inertial force | $V(m/s)$ $A_n = (\frac{V}{t_n})$ P_{2T} | When accelerating $P_{i} = P_{2} = P_{3} = P_{4} = \frac{m \cdot (g + a_{i}) \cdot l_{3}}{2 \cdot l_{i}}$ $P_{i,T} = P_{2,T} = P_{3,T} = P_{4,T} = \frac{m \cdot (g + a_{i}) \cdot l_{4}}{2 \cdot l_{i}}$ When decelerating $P_{i} = P_{2} = P_{3} = P_{4} = \frac{m \cdot (g - a_{3}) \cdot l_{3}}{2 \cdot l_{i}}$ $P_{i,T} = P_{2,T} = P_{3,T} = P_{4,T} = \frac{m \cdot (g - a_{3}) \cdot l_{4}}{2 \cdot l_{i}}$ At constant speed $P_{i} = P_{2} = P_{3} = P_{4} = \frac{mg \cdot l_{3}}{2 \cdot l_{i}}$ $P_{i,T} = P_{2,T} = P_{3,T} = P_{4,T} = \frac{mg \cdot l_{4}}{2 \cdot l_{i}}$ | ## Calculation of equivalent load A block can bear force as well as torque from all axial and radial directions. When multiple loads are applied, these loads can be combined as an equivalent axial and radial load for the calculation of nominal life or static safety factor. Our linear guide can bear loads in four directions, up, down, left, and right. So when using linear slides, it may be subjected to vertical load (Ps) and lateral load (P₁) at the same time. When two or more linear guides are used, the equivalent load (P₂) can be converted according to the following formula. $P_{\scriptscriptstyle E} = |P_{\scriptscriptstyle R}| + |P_{\scriptscriptstyle T}|$ $P_{\scriptscriptstyle E}$: Equivalent load (N) $P_{\scriptscriptstyle R}$: Radial load (N) P_{τ} : Lateral load (N) In the case of single linear guide, equivalent load must take torque into account, see following formula. $P_{\scriptscriptstyle E} = |P_{\scriptscriptstyle R}| + |P_{\scriptscriptstyle T}| + C_{\scriptscriptstyle \theta} \frac{|M|}{M_{\scriptscriptstyle R}}$ $P_{\scriptscriptstyle E}:$ Equivalent load (N) $P_{\scriptscriptstyle R}$: Radial load (N) $P_{\scriptscriptstyle T}$: Lateral load (N) C_a: Basic static load rating (N) M: Calculated torque $(N \cdot m)$ $M_{\scriptscriptstyle R}$: Allowable static moment $(N \cdot m)$ # Calculation of average load The real-time acting load for a block during movement is always variable. One can derive average load for the use of rated life calculation based on different applications. Average load when rollers are steel ball is as follows: $$P_{m} = e\sqrt{\frac{1}{L} \cdot \sum_{n=1}^{n} \left(P_{n}^{e} \cdot L_{n} \right)}$$ P...: Average load (N) P.: Variable load (N) L: Total Working Distance (mm) L_n : Moving distance when load P_n applied (mm) e: Exponent (for steel ball: 3) #### Average load calculation example | Varying load type | Average load calculation | |--|---| | Interval Variable Load $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $P_{m} = e\sqrt{\frac{1}{L} \cdot \left(P_{i}^{e} \cdot L_{i} + P_{i}^{e} \cdot L_{z} + \dots + P_{n}^{e} \cdot L_{n}\right)}$ $P_{m} : \text{Average load} \qquad (N)$ $P_{s} : \text{Variable load} \qquad (N)$ $L : \text{Total Working Distance} \qquad (mm)$ $L_{n} : \text{Moving distance when load } P_{n} \text{ applied} \qquad (mm)$ $e : \text{Exponent (for steel ball: 3)}$ | | Monotonic variable load $\begin{array}{c} P_{max} \\ \hline P_{min} \\ \hline \end{array}$ Total working distance(L) | $P_{m} \approx \frac{1}{3} \left(P_{min} + 2 \cdot P_{max} \right)$ $P_{m} : \text{Average load} \qquad (N)$ $P_{min} : \text{Minimum load} \qquad (N)$ $P_{max} : \text{Maximum load} \qquad (N)$ | # AITTAL # **Linear Guide Selection** | Varying load type | Average load calculation | |--|--| | Sinusoidal variable load P_{max} P_{m} P_{m} $Total working distance(L)$ | $P_{m}pprox 0.65 \cdot P_{max}$ P_{m} : Average load (N) P_{max} : Maximum load (N) | | P _{max} P _m Total working distance(L) | $P_{m} \approx 0.75 \cdot P_{max}$ P_{m} : Average load (N) P_{max} : Maximum load (N) | # Calculation example # Conditions of Use Model: $LSH30HL2X2520S20BP-M6(2\ pcs)$ Basic dynamic load rating: $C=45.7\ KN$ Basic static load rating: $C_o=73.1\ KN$ Mass $m_i=700kg$ $m_j=450kg$ Mass $m_i = 700kg$ Speed V = 0.75m/s Time $t_1 = 0.05s$ $t_2 = 1.9s$ $t_3 = 0.15s$ Acceleration $a_1 = 15m/s^2$ $a_3 = 5m/s^2$ Travel Distance $l_s = 1500 mm$ Distance $l_1 = 650 \text{mm}$ $l_2 = 450 \text{mm}$ $l_3 = 135 \text{mm}$ $l_4 = 60 \text{mm}$ $l_5 = 175 \text{mm}$ $l_6 = 400 \text{mm}$ #### Load calculation of each block At constant speed, the radial load P_n $$\begin{split} P_{i} &= \frac{m_{i}g}{4} - \frac{m_{i}g \cdot l_{i}}{2l_{i}} + \frac{m_{i}g \cdot l_{i}}{2l_{2}} + \frac{m_{2}g}{4} = 2562N \\ P_{2} &= \frac{m_{i}g}{4} + \frac{m_{i}g \cdot l_{i}}{2l_{i}} + \frac{m_{i}g \cdot l_{i}}{2l_{2}} + \frac{m_{2}g}{4} = 3987N \\ P_{i} &= \frac{m_{i}g}{4} + \frac{m_{i}g \cdot l_{i}}{2l_{i}} - \frac{m_{i}g \cdot l_{i}}{2l_{2}} + \frac{m_{2}g}{4} = 3073N \\ P_{i} &= \frac{m_{i}g}{4} - \frac{m_{i}g \cdot l_{i}}{2l_{i}} - \frac{m_{i}g \cdot l_{i}}{2l_{2}} + \frac{m_{2}g}{4} = 1648N \end{split}$$ Acceleration is toward left, the radial load $P_n la_n$ $$\begin{split} P_{i}la_{i} &= P_{i} - \frac{m_{i} \cdot a_{i} \cdot l_{a}}{2l_{i}} - \frac{m_{2} \cdot a_{i} \cdot l_{s}}{2l_{i}} = -1577N \\ P_{2}la_{i} &= P_{2} + \frac{m_{i} \cdot a_{i} \cdot l_{a}}{2l_{i}} + \frac{m_{2} \cdot a_{i} \cdot l_{s}}{2l_{i}} = 8127N \\ P_{3}la_{i} &= P_{3} + \frac{m_{i} \cdot a_{i} \cdot l_{a}}{2l_{i}} + \frac{m_{2} \cdot a_{i} \cdot l_{s}}{2l_{i}} = 7212N \\ P_{4}la_{i} &= P_{4} - \frac{m_{i} \cdot a_{i} \cdot l_{a}}{2l_{i}} - \frac{m_{2} \cdot a_{i} \cdot l_{s}}{2l_{i}} = -2492N \end{split}$$ Lateral load Pt,la, $$\begin{split} Pt_{l}la_{l} &= -\frac{m_{l}\cdot a_{l}\cdot l_{s}}{2l_{l}} = -485N \\ Pt_{l}la_{l} &= \frac{m_{l}\cdot a_{l}\cdot l_{s}}{2l_{l}} = 485N \\ Pt_{l}la_{l} &= \frac{m_{l}\cdot a_{l}\cdot l_{s}}{2l_{l}} = 485N \\ Pt_{s}la_{l} &= -\frac{m_{l}\cdot a_{l}\cdot l_{s}}{2l_{l}} = -485N \\ Pt_{s}la_{l} &= -\frac{m_{l}\cdot a_{l}\cdot l_{s}}{2l_{l}} = -485N \end{split}$$ #### Conditions of Use Model: LSH30HL2X2520S20BP-M6(2 pcs) Basic dynamic load rating : C=45.7 KNBasic static load rating : $C_0 = 73.1 \text{ KN}$ Mass $m_1 = 700 kg$ m=450kg Speed V = 0.75 m/s Time $t_1 = 0.05s$ $t_1 = 1.9s$ $t_2 = 0.15s$ Acceleration $a_1 = 15 m/s^2$ $a_3 = 5m/s^2$ Travel Distance $l_s=1500mm$ Distance $l_1 = 650 \text{mm}$ $l_2 = 450 \text{mm}$ $l_3 = 135 \text{mm}$ $l_4 = 60 \text{mm}$ $l_5 = 175 \text{mm}$ L=400mm #### Load calculation of each block Deceleration is toward left, the radial load $P_n la_n$ $$P_1 l a_3 = P_1 + \frac{m_1 \cdot a_3 \cdot l_6}{2l_1} + \frac{m_2 \cdot a_3 \cdot l_5}{2l_2} = 3942N$$ $$P_2 la_3 = P_2 - \frac{m_1 \cdot a_3 \cdot l_6}{2l_1} - \frac{m_2 \cdot a_3 \cdot l_5}{2l_1} = 2607N$$ $$P_3 l a_3 = P_3 - \frac{m_1 \cdot a_3 \cdot l_6}{2l_1} - \frac{m_2 \cdot a_3 \cdot l_5}{2l_1} = 1693N$$ $$P_4 la_3 = P_4 + \frac{m_1 \cdot a_3 \cdot l_6}{2l_1} + \frac{m_2 \cdot a_3 \cdot l_5}{2l_2} = 3028N$$ Lateral load Pt,la3 $$Pt_{l}la_{3} = \frac{m_{l} \cdot a_{3} \cdot l_{4}}{2l_{l}} = 162N$$ $$Pt_2la_3 = -\frac{m_1 \cdot a_3 \cdot l_4}{2l_1} = -162N$$ $$Pt_3la_3 = -\frac{m_1 \cdot a_3 \cdot l_4}{2l} = -162N$$ $$Pt_{3}la_{3} = -\frac{m_{1} \cdot a_{3} \cdot l_{4}}{2l_{1}} = -162N$$ $$Pt_{4}la_{3} = \frac{m_{1} \cdot a_{3} \cdot l_{4}}{2l_{1}} = 162N$$ Acceleration is toward right, the radial load $P_n ra_1$ $$P_{1}ra_{1}=P_{1}+\frac{m_{1}\cdot a_{1}\cdot l_{6}}{2l_{1}}+\frac{m_{2}\cdot a_{1}\cdot l_{5}}{2l_{1}}=6702N$$ $$P_2 r a_1 = P_2 - \frac{m_1 \cdot a_1 \cdot l_6}{2l_1} - \frac{m_2 \cdot a_1 \cdot l_5}{2l_1} = -152N$$ $$P_3 r a_1 = P_3 - \frac{m_1 \cdot a_1 \cdot l_6}{2l_1} - \frac{m_2 \cdot a_1 \cdot l_5}{2l_1} = -1067N$$ $$P_4 r a_1 = P_4 + \frac{m_1 \cdot a_1 \cdot l_6}{2l_1} + \frac{m_2 \cdot a_1 \cdot l_5}{2l_2} = 5787N$$ Lateral load Pt,ra, $$Pt_{i}ra_{i} = \frac{m_{i} \cdot a_{i} \cdot l_{4}}{2l_{i}} = 485N$$ $$Pt_2ra_1 = -\frac{m_1 \cdot a_1 \cdot l_4}{2l_1} = -485N$$ $$Pt_3ra_1 = -\frac{m_1 \cdot a_1 \cdot l_4}{2l} = -485N$$ $$Pt_{3}ra_{i} = -\frac{m_{i} \cdot a_{i} \cdot l_{4}}{2l_{i}} = -485N$$ $$Pt_{4}ra_{i} = \frac{m_{i} \cdot a_{i} \cdot l_{4}}{2l_{i}} = 485N$$ Deceleration is toward right, the radial load $P_n ra_3$ $$P_{1}ra_{3}=P_{1}-\frac{m_{1}\cdot a_{3}\cdot l_{6}}{2l_{1}}-\frac{m_{2}\cdot a_{3}\cdot l_{5}}{2l_{1}}=1183N$$ $$P_2 r a_3 = P_2 + \frac{m_1 \cdot a_3 \cdot l_6}{2l_1} + \frac{m_2 \cdot a_3 \cdot l_5}{2l_1} = 5367N$$ $$P_3 r a_3 = P_3 + \frac{m_1 \cdot a_3 \cdot l_6}{2l_1} + \frac{m_2 \cdot a_3 \cdot l_5}{2l_2} = 4452N$$
$$P_{j}ra_{j}=P_{j}+\frac{m_{l}a_{j}\cdot l_{b}}{2l_{l}}+\frac{m_{2}a_{j}\cdot l_{s}}{2l_{l}}=4452N$$ $$P_{s}ra_{j}=P_{s}-\frac{m_{l}a_{s}\cdot l_{b}}{2l_{l}}-\frac{m_{2}a_{j}\cdot l_{s}}{2l_{l}}=268N$$ Lateral load Pt,ra $$Pt_{i}ra_{3} = -\frac{m_{i} \cdot a_{3} \cdot l_{4}}{2l_{i}} = -162N$$ $$Pt_2ra_3 = \frac{m_1 \cdot a_3 \cdot l_4}{2l_1} = 162N$$ $$Pt_3 ra_3 = \frac{m_1 \cdot a_3 \cdot l_4}{2l_1} = 162N$$ $$Pt_4 ra_3 = -\frac{m_1 \cdot a_3 \cdot l_4}{2l_1} = -162N$$ #### **Equivalent load calculation** At constant speed $$P_{EI} = P_I = 2562N$$ $$P_{E2} = P_2 = 3987N$$ $$P_{E3} = P_3 = 3073N$$ $$P_{Ed} = P_d = 1648N$$ When acceleration is toward left $$P_{\scriptscriptstyle E_I} la_{\scriptscriptstyle I} = |P_{\scriptscriptstyle I} la_{\scriptscriptstyle I}| + |Pt_{\scriptscriptstyle I} la_{\scriptscriptstyle I}| = 2062N$$ $$P_{E2}la_1 = |P_2la_1| + |Pt_2la_1| = 8611N$$ $$P_{E3}la_1 = |P_3la_1| + |Pt_3la_1| = 7697N$$ $$P_{E_4}la_1 = |P_4la_1| + |Pt_4la_1| = 2976N$$ #### **Conditions of Use** $\label{eq:model:LSH30HL2X2520S20BP-M6(2 pcs)} \mbox{Basic dynamic load rating}: C=45.7 \ KN \\ \mbox{Basic static load rating}: C_{\theta}=73.1 \ KN \\ \mbox{Model}$ $Mass m_1 = 700kg m_2 = 450kg$ Speed V=0.75m/s Time $t_1 = 0.05s$ $t_2 = 1.9s$ $t_3 = 0.15s$ Acceleration $a_1 = 15m/s^2$ $a_3 = 5m/s^2$ Travel Distance L=1500mm Distance l = 650 mm l = 450 mm l = 135 mm l = 60 mm l = 175 mm l = 400 mm #### Equivalent load calculation When deceleration is toward left $$P_{E_1} la_3 = |P_1 la_3| + |P_1 la_3| = 4104N$$ $$P_{F}, |a_{3}| = |P, |a_{3}| + |Pt, |a_{3}| = 2769N$$ $$P_{E_3}la_3 = |P_3la_3| + |Pt_3la_3| = 1854N$$ $$P_{E_4}la_3 = |P_4la_3| + |Pt_4la_3| = 3189N$$ When acceleration is toward right $$P_{E_i} r a_i = |P_i r a_i| + |P t_i r a_i| = 7186N$$ $$P_{E2}ra_1 = |P_2ra_1| + |Pt_2ra_1| = 637N$$ $$P_{E_3}ra_1 = |P_3ra_1| + |Pt_3ra_2| = 1551N$$ $$P_{Ed}ra_I = |P_dra_I| + |Pt_dra_I| = 6272N$$ When deceleration is toward right $$P_{E_1}ra_3 = |P_1ra_3| + |Pt_1ra_3| = 1344N$$ $$P_{F}, ra_{3} = |P_{3}, ra_{3}| + |Pt_{3}, ra_{3}| = 5529N$$ $$P_{E3}ra_3 = |P_3ra_3| + |Pt_3ra_3| = 4614N$$ $$P_{E_4} r a_3 = |P_4 r a_3| + |P_4 r a_3| = 430N$$ #### Calculation of static safety factor We now know that the maximum equivalent load occurs on No.2 slider. Therefore, one can calculate static safety factor based on it in following formula $$f_s = \frac{C_0}{P_{E,2}la_1} = \frac{73.1 \times 10^3}{8611} = 8.49$$ # Calculation of the average load of each slider P_{mn} $$P_{mi} = 3\sqrt{-(P_{Ei}la_{i}^{3}X_{i} + P_{Ei}^{3}X_{2} + P_{Ei}la_{j}^{3}X_{3} + P_{Ei}ra_{j}^{3}X_{1} + P_{Ei}^{3}X_{2} + P_{Ei}ra_{j}^{3}X_{3})} - \frac{1}{2l_{i}}$$ =2701N $$P_{m2} = 3\sqrt{\frac{(P_{E2}la_1^3X_1 + P_{E2}^3X_2 + P_{E2}la_3^3X_3 + P_{E2}ra_1^3X_1 + P_{E2}^3X_2 + P_{E2}ra_3^3X_3)}{2l_s}}$$ =4077N $$P_{m3} = 3\sqrt{\frac{(P_{E3}la_{i}^{3}X_{i} + P_{E3}^{3}X_{2} + P_{E3}la_{j}^{3}X_{3} + P_{E3}ra_{i}^{3}X_{i} + P_{E3}^{3}X_{2} + P_{E3}ra_{j}^{3}X_{3})}{2l_{i}}}$$ =3188N $$P_{md} = 3 \sqrt{ \frac{(P_{Ed} la_1^3 X_1 + P_{Ed}^3 X_2 + P_{Ed} la_3^3 X_3 + P_{Ed} ra_1^3 X_1 + P_{Ed}^3 X_2 + P_{Ed} ra_3^3 X_3)}{2l_s}}$$ =1873N #### Calculation of rated life L_n Assuming f_w =1.5 and according to rated life formula, the rated life can be calculated as follows: $$L_i = \left(\frac{C}{f.P.L.}\right)^3 \times 50 = 71758Km$$ $L_3 = \left(\frac{C}{f.P.L.}\right)^3 \times 50 = 43641Km$ $$L_{2} = \left(\frac{C}{f_{w}P_{m2}}\right)^{3} \times 50 = 20865Km \qquad L_{4} = \left(\frac{C}{f_{w}P_{m4}}\right)^{3} \times 50 = 215195Km$$ # Calculation conclusion Choose the minimum from four sliders to represent rated life, which is 20865 Km on No.2 slider #### Preload and rigidity Preload spec can be applied to enhance rigidity. As the graph shows on the right, the effectiveness of preload can maintain until external load reaches 2.8 times of preload strength. In other words, rigidity increases 2.8 times. Preload is applied by choosing bigger diameter of rollers to increase interference between rollers and groove and raise initial loads. Therefore when calculating rated life, preload should be put into consideration. # **LSH Series Standard Type Linear Guide** #### **Product Introduction** #### **Product Features** # 1. With self-adjustment ability X-shaped (45°-45°) of curved groove on cross section design makes it self-aligning. Even small misalignment exists on the mounting surface, this design can help absorb it and maintain high precision, smooth and stable linear motion. #### ${\bf 2.\, High\, rigidity, \, equal\, load\, on\, four\, direction\, design}$ The 45-degree contact angle design of the four rows of steel balls and the raceway allow the steel balls to achieve the ideal two-point contact, and can withstand the action and reaction force from the radial and lateral direction. Meanwhile, pre-load can be applied to increase extra rigidity if necessary. #### 3. Interchangeable Because of the strict control on manufacturing process, the dimensional accuracy is stable and within the set tolerance. Besides the ball retainer design can prevent steel balls from falling out. Therefore when assembling, blocks are interchangeable within the same spec and still maintain consistency of pre-load and accuracy. # Order Information(Combined) [Note 1] Refer to P25 for highly dust proof type. # **Butt-jointed Order Information** [Note 1] Refer to P25 for highly dust proof type. Add: Number of joints cannot be more than 2 times(three rails at most). For LSH15/20/25, maximum length of jointed rail is 11800mm. For LSH30/35, it's 11880. For LSH45, it's 11805. Customization is needed for joint times more than standard. #### 1. Block Order Information [Note1]: When selecting rails and bearings, the different pairing codes can change the uints preload. details see"preload pairing chart". [Note 2] Refer to P25 for highly dust proof type. # 2. Rail(4m) Order Information ③ Rail Code RL: Rail ④ Rail Length 4000 : 4000 mm ⑤ Accuracy N : Normal H : High ⑥ Group code E [Note] ⑦ Rail type Blank: Top-mount T: Bottom-mount - Note: •Standard length of LSH rail is four meters. - •For LSH15/20/25, both margin pitch of rail are 20mm. - \bullet For LSH30/35, one side of margin pitch is 20mm, the other side is 60mm. - •For LSH45, one side of margin pitch is 22.5mm, the other side is 92.5mm. - When selecting rails and bearings, the different pairing codes can change the uints preload. details see "preload pairing chart". #### 3. Rail Order Information #### LSH 15 RL X 220-S20 -H- D- T | ① Model Code | LSH:Standard Type Linear Guide | | | | | | | | | | | | | | |-----------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|--|--| | ②Rail Width | 15: 15mm 20: 20mm 25: 23mm 30: 28mm 35: 34mm 45: 45mm | | | | | | | | | | | | | | | ③Rail Code | RL: Rail | | | | | | | | | | | | | | | | 220:220mm[Defined by the customer] | | | | | | | | | | | | | | | © Position of first mounting hole | S□: Distance from end of rail to the center of first mounting hole
(It is recommended to be greater than minimum margin)
[Standard margin pitch is 20mm] | | | | | | | | | | | | | | | ®Accuracy | N: Normal H: High | | | | | | | | | | | | | | | ⑦ Group code | E [Note] | | | | | | | | | | | | | | | ® Rail type | Blank: Top-mount T: Bottom-mount | | | | | | | | | | | | | | Note: When selecting rails and bearings, the different pairing codes can change the uints preload. details see "preload pairing chart". LSH15/20/25/30/35 margin pitch is 20mm, LSH45 margin pitch is 22.5mm, Customer can define a non-standard margin pitch. #### **I SH Series** ## 4. Rail/Block preload pairing chart When customer orders rail/block, please choose the pairing code of rail/block in accordance with the needed preload of linear guide(combined). Details please refer to the "preload pairing chart". | Model | Rail
pairing
code | Block
pairing
code | Preload grade | Model | Rail
pairing
code | Block
pairing
code | Preload grade | Model | Rail
pairing
code | Block
pairing
code | Preload grade | | |-------|-------------------------|--------------------------|--------------------|-------|-------------------------|--------------------------|--------------------|----------------|-------------------------|--------------------------|--------------------|--| | LSH15 | | E | Standard clearance | | | Е | Standard clearance | 1 01105 | | E | Standard clearance | | | LSH20 | E | С | Light preload | LSH30 | E | С | Light preload | LSH35
LSH45 | E | В | Light preload | | | LSH25 | | SA | Medium preload | | | SB | Medium preload | L31143 | | SC | Medium preload | | # **Accessory Order Code** # **Rail Specification** The edge pitch of first mounting hole (S) and last mounting hole (E) should not be greater than 1/2P. Overlong edge may induce unstable installation and affect the accuracy. n: Numbers of mounting holes L=(n-1)×P+S+E P: Distance between bolt holes(mm) $L \colon Total \ length \ of \ rail (mm)$ S: Edge of first mounting hole(mm) | Model | LSH15 | LSH20 | LSH25 | LSH30 | LSH35 | LSH45 | |--|-------|-------|-------|-------|-------|-------| | Pitch(P) | 60 | 60 | 60 | 80 | 80 | 105 | | Standard Edge Pitch(S) | 20 | 20 | 20 | 20 | 20 | 22.5 | | Min. Edge Pitch(S/E min) | 5 | 6 | 7 | 8 | 8 | 11 | | Max. Edge Pitch(S/E max) | 55 | 54 | 53 | 72 | 72 | 94 | | Maximum length of rail for standard edge | 4000 | 4000 | 4000 | 3960 | 3960 | 3930 | | Maximum length(Lmax) | 4000 | 4000 | 4000 | 4000 | 4000 | 4000 | #### Note: - Joint rail must be chosen if length of rail exceeds the maximum. - When deciding edge pitch, it should be within the range of above table. There would be risk of broken hole if pitch is out of range. - Maximum length of rail for standard' means the maximum length of rail can be chosen when
both sides of edge pitches are standard. ### **Specifications and Dimensions** #### Square type | Model\Item | Mounting | Dynamic Load Rating(kN) | Static Load Rating(kN) | Static Ra | ated Momer | Weight | | | |------------|----------|-------------------------|------------------------|----------------|----------------|----------------|-----------|------------| | Model/Item | Screw | С | C ₀ | M _R | M _P | M _Y | Block(kg) | Rail(kg/m) | | LSH15HN | M4 | 11.3 | 17.9 | 0.12 | 0.12 | 0.12 | 0.2 | 1.43 | | LSH20HN | M5 | 18.6 | 28.6 | 0.27 | 0.25 | 0.25 | 0.33 | 2.23 | | LSH20HL | M5 | 22.2 | 37.6 | 0.35 | 0.34 | 0.34 | 0.41 | 2.23 | | LSH25HN | M6 | 26.9 | 39.4 | 0.44 | 0.38 | 0.38 | 0.53 | 3.32 | | LSH25HL | M6 | 32.9 | 53.0 | 0.58 | 0.57 | 0.57 | 0.7 | 3.32 | | LSH30HN | M8 | 37.4 | 55.0 | 0.66 | 0.67 | 0.67 | 0.91 | 4.5 | | LSH30HL | М8 | 45.7 | 73.1 | 0.88 | 0.91 | 0.91 | 1.17 | 4.5 | | LSH35HN | M8 | 50.8 | 72.3 | 1.05 | 0.92 | 0.92 | 1.26 | 6.37 | | LSH35HL | М8 | 61.9 | 96.1 | 1.52 | 1.45 | 1.45 | 1.68 | 6.37 | | LSH45HN | M12 | 80.7 | 110.3 | 1.95 | 1.62 | 1.62 | 2.72 | 10.7 | | LSH45HL | M12 | 98.5 | 146.9 | 2.59 | 2.92 | 2.92 | 3.60 | 10.7 | # Flange type, Top-Mount | | | | | E | xternal Di | mension (mm) | | Block Dimension (mm) Rail Dimension (mm | | | | | | | | | ım) | | | | | |------------|----|-----|-----|------|---------------------|-------------------------|-------------------------------|--|----|-----|-----|------|----------|----|----|------|------|------|------|-----|-----| | Model\Item | | | | | | С | | | | | | | | | | | | | | | | | | Н | H1 | F | Y | Standard
(Blank) | Double oil scrapers(DD) | Oil scraper+Metal scraper(ZZ) | C1 | Α | В | K | D | M | T1 | G | H2 | Р | S | ΦQ | ΦИ | Н3 | | LSH15F1N | 24 | 3.5 | 47 | 16 | 60 | 67 | 64.5 | 40 | 30 | 38 | 4.3 | 6 | M5X0.8 | 11 | 15 | 15 | 60 | 20 | 8 | 4.8 | 5.3 | | LSH20F1N | 30 | 4.3 | 63 | 21.5 | 76.5 | 84.5 | 81 | 52 | 40 | 53 | 6.5 | 12.5 | M6X1.0 | 10 | 20 | 17.5 | 60 | 20 | 9.5 | 5.8 | 8.5 | | LSH20F1L | 30 | 4.3 | 63 | 21.5 | 90.5 | 98.5 | 95 | 66 | 40 | 53 | 6.5 | 12.5 | M6X1.0 | 10 | 20 | 17.5 | 60 | 20 | 9.5 | 5.8 | 8.5 | | LSH25F1N | 36 | 6.5 | 70 | 23.5 | 83.5 | 91.5 | 88 | 58.5 | 45 | 57 | 6.9 | 12.5 | M8X1.25 | 16 | 23 | 22 | 60 | 20 | 11.2 | 7 | 9 | | LSH25F1L | 36 | 6.5 | 70 | 23.5 | 105 | 113 | 109.5 | 80 | 45 | 57 | 6.9 | 12.5 | M8X1.25 | 16 | 23 | 22 | 60 | 20 | 11.2 | 7 | 9 | | LSH30F1N | 42 | 6.5 | 90 | 31 | 95.5 | 103.5 | 100.5 | 70.5 | 52 | 72 | 8 | 13 | M10X1.5 | 18 | 28 | 26 | 80 | 20 | 14.2 | 9 | 12 | | LSH30F1L | 42 | 6.5 | 90 | 31 | 118 | 126 | 123 | 93 | 52 | 72 | 8 | 13 | M10X1.5 | 18 | 28 | 26 | 80 | 20 | 14.2 | 9 | 12 | | LSH35F1N | 48 | 7 | 100 | 33 | 109 | 118 | 114 | 80 | 62 | 82 | 9.2 | 12.5 | M10X1.5 | 21 | 34 | 29 | 80 | 20 | 14.2 | 9 | 12 | | LSH35F1L | 48 | 7 | 100 | 33 | 134.5 | 143.5 | 139.5 | 105.5 | 62 | 82 | 9.2 | 12.5 | M10X1.5 | 21 | 34 | 29 | 80 | 20 | 14.2 | 9 | 12 | | LSH45F1N | 60 | 10 | 120 | 37.5 | 132 | 141 | 137 | 98 | 80 | 100 | 10 | 16 | M12X1.75 | 22 | 45 | 38 | 105 | 22.5 | 20 | 14 | 17 | | LSH45F1L | 60 | 10 | 120 | 37.5 | 164 | 173 | 169 | 130 | 80 | 100 | 10 | 16 | M12X1.75 | 22 | 45 | 38 | 105 | 22.5 | 20 | 14 | 17 | | Model\Item | Mounting | Dynamic Load Rating(kN) | Static Load Rating(kN) | Static R | ated Momen | t (kN.m) | We | ight | |------------|----------|-------------------------|------------------------|----------------------------|----------------|----------------------------|-----------|------------| | Model/Item | Screw | С | C _o | $M_{\scriptscriptstyle R}$ | M _P | $M_{\scriptscriptstyle Y}$ | Block(kg) | Rail(kg/m) | | LSH15F1N | M4 | 11.3 | 17.9 | 0.12 | 0.12 | 0.12 | 0.2 | 1.43 | | LSH20F1N | M5 | 18.6 | 28.6 | 0.27 | 0.25 | 0.25 | 0.40 | 2.23 | | LSH20F1L | M5 | 22.2 | 37.6 | 0.35 | 0.34 | 0.34 | 0.8 | 2.23 | | LSH25F1N | M6 | 26.9 | 39.4 | 0.44 | 0.38 | 0.38 | 0.59 | 3.32 | | LSH25F1L | M6 | 32.9 | 53.0 | 0.58 | 0.57 | 0.57 | 0.85 | 3.32 | | LSH30F1N | M8 | 37.4 | 55.0 | 0.66 | 0.67 | 0.67 | 1.09 | 4.5 | | LSH30F1L | M8 | 45.7 | 73.1 | 0.88 | 0.91 | 0.91 | 1.38 | 4.5 | | LSH35F1N | M8 | 50.8 | 72.3 | 1.05 | 0.92 | 0.92 | 1.32 | 6.37 | | LSH35F1L | M8 | 61.9 | 96.1 | 1.52 | 1.45 | 1.45 | 1.8 | 6.37 | | LSH45F1N | M12 | 80.7 | 110.3 | 1.95 | 1.62 | 1.62 | 2.77 | 10.7 | | LSH45F1L | M12 | 98.5 | 146.9 | 2.59 | 2.92 | 2.92 | 3.67 | 10.7 | Flange type, Bottom-Mount Flange type, Top or Bottom-Mount | | | | | | External D | imension(mm |) | Block Dimension(mm) | | | | | | Rail Dimension(mm) | | | | | | | | | | |--------------|----|-----|-----|------|---------------------|----------------------------|----------------------------------|---------------------|----|-----|-----|------|------------------|-------------------------|-----|----|----|------|-----|------|------|-----|-----| | Model\Item | | | | | С | | | | | | | | М | | | | | | | | | | | | Moderntein | Н | H1 | F | Y | Standard
(Blank) | Double oil
scrapers(DD) | Oil scraper+Metal
scraper(ZZ) | C1 | А | В | K | D | Bottom
-Mount | Top or Bottom
-Mount | Т | T1 | G | H2 | Р | S | ФQ | ΦU | Н3 | | LSH15F2(F3)N | 24 | 3.5 | 47 | 16 | 60 | 67 | 64.5 | 40 | 30 | 38 | 4.3 | 6 | Ф4.5 | M5X0.8 | 7 | 11 | 15 | 15 | 60 | 20 | 8 | 4.8 | 5.3 | | LSH20F2(F3)N | 30 | 4.3 | 63 | 21.5 | 76.5 | 84.5 | 81 | 52 | 40 | 53 | 6.5 | 12.5 | Ф5.7 | M6X1.0 | 9.5 | 10 | 20 | 17.5 | 60 | 20 | 9.5 | 5.8 | 8.5 | | LSH20F2(F3)L | 30 | 4.3 | 63 | 21.5 | 90.5 | 98.5 | 95 | 66 | 40 | 53 | 6.5 | 12.5 | Ф5.7 | M6X1.0 | 9.5 | 10 | 20 | 17.5 | 60 | 20 | 9.5 | 5.8 | 8.5 | | LSH25F2(F3)N | 36 | 6.5 | 70 | 23.5 | 83.5 | 91.5 | 88 | 58.5 | 45 | 57 | 6.9 | 12.5 | Ф6.8 | M8X1.25 | 10 | 16 | 23 | 22 | 60 | 20 | 11.2 | 7 | 9 | | LSH25F2(F3)L | 36 | 6.5 | 70 | 23.5 | 105 | 113 | 109.5 | 80 | 45 | 57 | 6.9 | 12.5 | Ф6.8 | M8X1.25 | 10 | 16 | 23 | 22 | 60 | 20 | 11.2 | 7 | 9 | | LSH30F2(F3)N | 42 | 6.5 | 90 | 31 | 95.5 | 103.5 | 100.5 | 70.5 | 52 | 72 | 8 | 13 | Ф9 | M10X1.5 | 10 | 18 | 28 | 26 | 80 | 20 | 14.2 | 9 | 12 | | LSH30F2(F3)L | 42 | 6.5 | 90 | 31 | 118 | 126 | 123 | 93 | 52 | 72 | 8 | 13 | Ф9 | M10X1.5 | 10 | 18 | 28 | 26 | 80 | 20 | 14.2 | 9 | 12 | | LSH35F2(F3)N | 48 | 7 | 100 | 33 | 109 | 118 | 114 | 80 | 62 | 82 | 9.2 | 12.5 | Ф9 | M10X1.5 | 13 | 21 | 34 | 29 | 80 | 20 | 14.2 | 9 | 12 | | LSH35F2(F3)L | 48 | 7 | 100 | 33 | 134.5 | 143.5 | 139.5 | 105.5 | 62 | 82 | 9.2 | 12.5 | Ф9 | M10X1.5 | 13 | 21 | 34 | 29 | 80 | 20 | 14.2 | 9 | 12 | | LSH45F2(F3)N | 60 | 10 | 120 | 37.5 | 132 | 141 | 137 | 98 | 80 | 100 | 10 | 16 | Ф11 | M12X1.75 | 15 | 22 | 45 | 38 | 105 | 22.5 | 20 | 14 | 17 | | LSH45F2(F3)L | 60 | 10 | 120 | 37.5 | 164 | 173 | 169 | 130 | 80 | 100 | 10 | 16 | Ф11 | M12X1.75 | 15 | 22 | 45 | 38 | 105 | 22.5 | 20 | 14 | 17 | | Model\Item | Mounting | Dynamic Load Rating(kN) | Static Load Rating(kN) | Static Ra | ited Momei | nt (kN.m) | We | ight | |--------------|----------|-------------------------|------------------------|----------------|----------------|----------------|-----------|------------| | Model/Item | Screw | С | C _o | M _R | M _P | M _Y | Block(kg) | Rail(kg/m) | | LSH15F2(F3)N | M4 | 11.3 | 17.9 | 0.12 | 0.12 | 0.12 | 0.2 | 1.43 | | LSH20F2(F3)N | M5 | 18.6 | 28.6 | 0.27 | 0.25 | 0.25 | 0.40 | 2.23 | | LSH20F2(F3)L | M5 | 22.2 | 37.6 | 0.35 | 0.34 | 0.34 | 0.8 | 2.23 | | LSH25F2(F3)N | M6 | 26.9 | 39.4 | 0.44 | 0.38 | 0.38 | 0.59 | 3.32 | | LSH25F2(F3)L | M6 | 32.9 | 53.0 | 0.58 | 0.57 | 0.57 | 0.85 | 3.32 | | LSH30F2(F3)N | M8 | 37.4 | 55.0 | 0.66 | 0.67 | 0.67 | 1.09 | 4.5 | | LSH30F2(F3)L | M8 | 45.7 | 73.1 | 0.88 | 0.91 | 0.91 | 1.38 | 4.5 | | LSH35F2(F3)N | M8 | 50.8 | 72.3 | 1.05 | 0.92 | 0.92 | 1.32 | 6.37 | | LSH35F2(F3)L | M8 | 61.9 | 96.1 | 1.52 | 1.45 | 1.45 | 1.8 | 6.37 | | LSH45F2(F3)N | M12 | 80.7 | 110.3 | 1.95 | 1.62 | 1.62 | 2.77 | 10.7 | | LSH45F2(F3)L | M12 | 98.5 | 146.9 | 2.59 | 2.92 | 2.92 | 3.67 | 10.7 | # Dimension of bottom-mount type rail | Model\Item | G | Н | М | Α | Р | |------------|----|------|----------|----|-----| | LSH15T | 15 | 15 | M5X0.8 | 8 | 60 | | LSH20T | 20 | 17.5 | M6X1.0 | 10 | 60 | | LSH25T | 23 | 22 | M6X1.0 | 12 | 60 | | LSH30T | 28 | 26 | M8X1.25 | 15 | 80 | | LSH35T | 34 | 29 | M8X1.25 | 17 | 80 | | LSH45T | 45 | 38 | M12X1.75 | 24 | 105 | ## **Accuracy** LSH standard type linear guide comes with 3 accuracy levels. | | Accuracy Standards (mm) | | | | | | | | | | | |--|-------------------------|---|--------|--|----------|-------|--------|-------------|--------|--|--| | Accuracy | | N : Normal | | | H: High | | F | P:Precision | 1 | | | | Model | 15/20 | 25/30/35 | 45 | 15/20 | 25/30/35 | 45 | 15/20 | 25/30/35 | 45 | | | | Tolerance of height H | | ±0.1 | | | ±0.04 | ±0.05 | ±0.015 | ±0.02 | ±0.025 | | | | Variation of height ΔH | 0.02 | 0.025 | 0.03 | 0.01 | 0.01 | 15 | 0.006 | 0.00 | 07 | | | | Tolerance of width Y | | ±0.1 | | ±0.03 | ±0.04 | ±0.05 | ±0.015 | ±0.02 | ±0.025 | | | | Variation of width ΔY | 0.02 | 0.03 | 3 | 0.01 | 0.015 | 0.02 | 0.006 | 0.007 | 0.01 | | | | Parallelism of C-surface relative to A-surface | | | Parall | allelism of raceway (Refer to Table 1) | | | | | | | | | Parallelism of D-surface relative to B-surface | | Parallelism of raceway (Refer to Table 1) | | | | | | | | | | Table 1 : Parallelism of the raceway | Rail Length
Accuracy | n(mm) | 100
under | 100~200 | 200~300 | 300~500 | 500~700 | 700~900 | 900~1100 | 1100~1500 | 1500~1900 | 1900~2500 | 2500~3100 | 3100~3600 | 3600~4000 | |-------------------------|----------------|--------------|---------|---------|---------|---------|---------|----------|-----------|-----------|-----------|-----------|-----------|-----------| | Parallelism of | N | 12 | 14 | 15 | 17 | 20 | 22 | 24 | 26 | 28 | 31 | 33 | 36 | 37 | | the | Н | 7 | 9 | 10 | 12 | 13 | 15 | 16 | 18 | 20 | 22 | 25 | 27 | 28 | |
raceway(µm) | Р | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 11 | 13 | 15 | 18 | 20 | 21 | # **Preload Level** #### 1. Preload interference The LSH standard type Linear Guide has three preload categories: A,B and C. $Choosing \ suitable \ preload \ level \ will \ enhance \ rigidity, \ precision \ and \ torsion \ resistant \ performace \ of the \ linear \ guide.$ | Model | Ra | Radial interference(µm) | | | | | | | | | | |-------|-----------------------|-------------------------|-------------------|--|--|--|--|--|--|--|--| | Wouei | Standard clearance(A) | Light Preload(B) | Medium Preload(C) | | | | | | | | | | LSH15 | - 4~+2 | -12~-4 | -22~-14 | | | | | | | | | | LSH20 | - 5∼+2 | -13~-5 | -23~-15 | | | | | | | | | | LSH25 | - 6∼+2 | -14~-6 | -24~-16 | | | | | | | | | | LSH30 | - 7∼+2 | -16~-7 | -29~-20 | | | | | | | | | | LSH35 | -8~+2 | -21~-11 | -34~-24 | | | | | | | | | | LSH45 | -9~+2 | -25~-16 | -38~-27 | | | | | | | | | #### 2. Common Application Refer to following table for suitable application of different preload grade: | Preload grade | Requirement | Common Application | |--------------------------|---|---| | Standard
clearance(A) | One axial movement, small vibration and impact, accuracy requirement is low | Conveyor Machine, Semiconductor Equipment, Stage
Equipment, Press Machine, Welding Machine and other
light movement equipments | | Light
Preload(B) | Equipment that requires light-load and high-precision. | Z-axis movement for industrial use, NC lathe, EDM,
Precision XY platform, Vertical machine center,
measurement instrument, material feeder or industrial
robot | | Medium
Preload(C) | Equipment that requires high rigidity,
large vibration and shock. | Machining centers, NC lathes, grinders, vertical or horizontal milling machines, boring machines, tool guides, heavy cutting machines. | #### Installation Illustration #### 1. Allowable tolerance of mounting surface LSH series is an arc-shape, two-point contact design of linear guide. Its self-centering feature allows some tolerance on mounting surface without affecting the smoothness of linear motion. The allowable tolerance is indicated in following table: | | Allowable to | lerance of para | allelism P(µm) | Allowable tole | rance of top and | bottom S (µm) | |-------|-----------------------|---------------------|----------------------|-----------------------|---------------------|----------------------| | Model | Standard clearance(A) | Light
Preload(B) | Medium
Preload(C) | Standard clearance(A) | Light
Preload(B) | Medium
Preload(C) | | LSH15 | 25 | 18 | 13 | 130 | 85 | 35 | | LSH20 | 25 | 20 | 18 | 130 | 85 | 50 | | LSH25 | 30 | 22 | 20 | 130 | 85 | 70 | | LSH30 | 40 | 30 | 27 | 170 | 110 | 90 | | LSH35 | 50 | 35 | 30 | 210 | 150 | 120 | | LSH45 | 60 | 40 | 35 | 250 | 170 | 140 | Note: The value in the table is the allowable value when the distance between the two linear guides is 500mm, and the allowable value is proportional to the distance between the two linear guides. #### 2. Height and Chamfer of Reference Edge In order to ensure accurate installation of LSH Linear Guide, the contact space should not exceed the given figures in following table. | | | | | Onit . Illilli | |-------|-----|-----|----|----------------| | Model | Н | H1 | H2 | R(Max) | | LSH15 | 3.5 | 3 | 4 | 0.5 | | LSH20 | 4.3 | 3.5 | 5 | 0.5 | | LSH25 | 6.5 | 5 | 5 | 1 | | LSH30 | 6.5 | 5 | 5 | 1 | | LSH35 | 7 | 6 | 6 | 1 | | LSH45 | 10 | 8 | 8 | 1 | #### 3. Screw Tighten Torque When installing linear guide, whether the screws are well tighten and surface is well contacted will affect accuracy significantly. Please refer to following table for tightening force to ensure a perfect installation. | Model | Screw | Т | ighten To | orque(N.cm) | |-------|-------|-------|-----------|----------------| | wodei | size | Iron | Casting | Aluminum alloy | | LSH15 | M4 | 412 | 274 | 206 | | LSH20 | M5 | 882 | 588 | 441 | | LSH25 | M6 | 1370 | 921 | 686 | | LSH30 | M8 | 3040 | 2010 | 1470 | | LSH35 | M8 | 3040 | 2010 | 1470 | | LSH45 | M12 | 11800 | 7840 | 5880 | ## 4. Installation and Application $Linear\ guide in stallation\ methods\ can\ be\ divided\ into\ the\ followings.$ For installations other than forward installation, the lubricant may fail. # Airtac #### LSH Series #### 5. Datum plane - Datum plane for installation must be ground or finely milled to ensure accuracy. - Both sides of Rail can be used as the datum plane. - For multi-blocks on a rail, identification line on blocks should be put on the same side to ensure moving accuracy. #### 6. Fixation Method Rails and blocks are possible to be displaced while the machine is subjected to vibrations and impacts thus to affect the accuracy. In order to avoid those difficulties and achieve high running accuracy, the following four methods are recommended for fixing. #### 7. Rail Installation A. Before installing the rail, remove all dirt from the mounting surface with oil stone, and then wipe with a clean cloth. Remove all dirt from the mounting surface with oil stone, and then wipe with a clean cloth B. Place the rail gently on the bed firstly, then put the bolts into the mounting holes and pre-tighten them, place the rail(1) into close contact with the datum plane of the bed by using the baffle, tighten the bolts with appropriate torque to fix the rail. Refer to "3. Screw tighten torque" for recommended torque value. Tighten the screws after the side of the rail is correctly in line with the datum plane Place the rail tinto close contact with the datum plane (Rail can be locked by various accessories: needle roller+taper or pressing block) Tighten the screws with appropriate torque to fix the rail ① #### 8. Block Installation - Temporarily fix the table on the block by using the mounting bolts. - Push the block datum plane against the side datum plane of the table and position the block by tightening the set screws. - Tighten the mounting bolts in 1 to 4 sequences to fix the table on the block. ## 9. Subsidiary Rail Installation Under the condition that the subsidiary rail has a reference datum plane, remove all dirt from the mounting surface with oil stone, and then wipe with a clean cloth, mount the subsidiary rail (2) with the same method of the master rail (1). Under the condition that the subsidiary rail ② has a reference datum plane, remove all dirt from the mounting surface with oil stone, and then wipe with a clean cloth, #### I SH Series # AITAC #### 10. Rail Installation without Side Datum Surface #### Using a provisional datum plane Use the datum plane provided on the bed for straight alignment of the rail from one end to the other, attention must be paid to fix two blocks in close contact on the measuring plate. Put the straight-edge between the two rails and use a dial gauge to adjust straight-edge in parallel with the side datum plane of the master rail. Use the dial gauge to ensure the straightness of the subsidiary rail by using the straight-edge as reference, then tighten the mounting bolts in proper sequence when the subsidiary rail is parallel to the master rail. Using a straight-edge #### 11. Rail Installation without Set Screws To ensure parallelism between the subsidiary rail and the master rail in the condition without set screws, the following installation methods are recommended, and the installation of the block is the same as mentioned previously. #### Installation of the master rail #### Using a vice Put the rail on the bed mounting surface and temporarily fasten the mounting bolts, then push the rail against the side datum plane of the bed by using a vice to ensure the rail position. Tighten the mounting bolts in proper sequence with specific torque. ## Installation of the subsidiary rail #### Using a straight-edge Put the straight-edge between the two rails and use a dial gauge to adjust straight-edge in parallel with the side datum plane of the master rail. Use the straight-edge to ensure the straightness of the subsidiary rail, then tighten the mounting bolts in proper sequence with specific torque. #### Using a table Fix two blocks on the master rail to the table, and temporarily fix the subsidiary rail to the bed and one block on the subsidiary rail to the table. Place the gauge against the side surface of the block on the subsidiary rail, move the table from one end of the rail to the other end, then tighten the mounting bolts in proper sequence with specific torque while aligning the subsidiary rail parallel to the master rail. #### Following the master rail Fix the table to the two blocks on the mater rail and one of the two blocks on the subsidiary rail, temporarily fix the other block on the subsidiary rail to the table and subsidiary rail to the bed. Moving the table from one end of the master rail and tighten the mounting bolts on the subsidiary rail in proper sequence with specific torque at the same time. #### Using a jig Use a special jig to help ensure the position of the subsidiary rail, and tighten the mounting bolts in proper sequence with specific torque. #### I SH Series #### 12. Rail Butt-jointed - When it comes to butt-jointed rail installation, it must follow the butt-jointed marks shown below. - In order to avoid the accuracy caused by installing the matched jointed rails, it is recommended to stagger the butt-jointed positions, see figure below. • When jointing rails, it must follow group marks on rail to ensure the accuracy of linear guide. These marks are located on the top surface at joint side. Please put the same group marks together. Butt-jointed mark - Be aware serial number of group mark when assemble. A001 and B001 are in a group, so as to A002 and B002 and so on. - Be
aware the installation direction while assembly, the serial numbers are not upside down and arrows point to each other. #### 13. Measurement Method after Installation When measuring running accuracy of the block, two blocks should be fixed on an inspection table in close contact to obtain stable accuracy. When using a dial gauge, a provisional benchmark (like a straight-edge) is recommended to put as close as possible to the block for accurate measurement. Λ #### Lubrication method When a linear guide is well lubricated, it can reduce wear and increase lifespan significantly. Lubrication has the following benefits: - Reduces friction of the rollers and raceway to minimize wear. - The grease film between contact surface can prevent roller fatigue. - Prevent rust. #### 1. Lubrication Grease Use the correct grade of lubrication. While lubricating, a grease gun can be used to pump grease into slider through the grease nipple on it. The suitable condition for lube is when working speed is under 60 m/min and not in cooling process. #### Grease amount LSH series linear guide is well lubricated with 'Shell Alvania grease S2' in factory. Customers are recommended to use identical or the same grade of Jubricant. After Jubrication, block needs to be moved back and forth at Jeast three times for the Jength of three blocks and repeat at Jeast twice. Check if the surface of rail is well covered by grease film. | Model | Grease amount for the | e first lubrication(cm³) | Replenishment amount(cm³) | | | | | |-------|-----------------------|--------------------------|---------------------------|-----------|--|--|--| | Wodel | Standard type | Long type | Standard type | Long type | | | | | LSH15 | 0.9 | - | 0.3 | - | | | | | LSH20 | 1.8 | 2.7 | 0.6 | 0.9 | | | | | LSH25 | 3.6 | 4.5 | 1.1 | 1.4 | | | | | LSH30 | 5.4 | 7.2 | 1.7 | 2.2 | | | | | LSH35 | 8.1 | 10 | 2.5 | 3 | | | | | LSH45 | 8.4 | 10.4 | 2.8 | 3.5 | | | | #### Lubrication frequency Although the linear guides are well lubricated at the factory and retains grease well, frequent lubrication is still necessary to avoid undesirable wear. Recommended lubrication period is every 100km of movement or every 3~6 months. (Refer to table on the top for suggested amount) # 2. Lubricating oil Recommended oil viscosity for lubrication use is about 30 to 150 cst. Lubrication oil is suitable for all kinds of load and impact application, but not for high temperature use due to its tendency of vaporization. #### Adaptor # AITTAD #### I SH Series Note: After installation, the top surface of adaptor may be higher than block. Be careful about the interference while moving. # Lubrication method #### Oil supply rate Loss of lubrication oil is faster than lubrication grease. Pay attention to sufficiency of oil while using. | Model | Oil amount for the first lubrication(cm³) | Feeding Speed(cm ³ /hr) | |-------|---|------------------------------------| | LSH15 | 0.6 | 0.2 | | LSH20 | 0.6 | 0.2 | | LSH25 | 0.9 | 0.3 | | LSH30 | 0.9 | 0.3 | | LSH35 | 0.9 | 0.3 | | LSH45 | 0.9 | 0.3 | #### 3. Grease nipple/adaptor installation - Grease nipple or adaptor can be installed in the two sides of block for manual or automatic lubrication based on customer's requirement. - •There are a secondary set of lubricating ports on the side of the block. When using, it is not recommended to use the side with datum line unless necessary. - •Lateral nipple installation is not recommended for flange type blocks. (The grease / oil nipple may interfere with block) - •If lateral lubrication is needed for above spec, please contact us for customization. ## **Bolt hole plug** #### 1. Plug type In order to prevent metal swarf or external objects from entering blocks and affecting precision and lifespan, customers must put plugs into holes during installation. Every rail is equipped with default plugs. | Model | Bolt | Diameter(D)(mm) | Thickness(H)(mm) | |-------|------|-----------------|------------------| | LSH15 | M4 | 8.15 | 1.1 | | LSH20 | M5 | 9.65 | 2.5 | | LSH25 | M6 | 11.4 | 2.5 | | LSH30 | M8 | 14.4 | 3.5 | | LSH35 | M8 | 14.4 | 3.5 | | LSH45 | M12 | 20.2 | 4.5 | #### 2. Plug installation Steps Place the plug in counterbore. #### Note: - Please make sure the plugs do not protrude the rail surface. - •After installation, please clean the surface before use. Place the flat piece on mounting hole, hit the piece vertically with a plastic hammer and fix the plug into counterbore. ### **Dust prevention illustration** #### 1. Code and structure AirTAC provides the following dust prevention accessories for the linear guides working in dusty environment, if the following accessories are demanded, please add the corresponding code when ordering. #### 2. Test for high dust prevention #### 2.1. Test item | Test medium | Wood chip | Iron filing | Gravel | |------------------|-----------|-------------|--------| | Running distance | 500km | 500km | 500km | #### 2.2. Test equipment Figure2: Dust tester (Inside) ### 2.3. Test condition AirTAC adopts the industry's first dust tester (Figure 1) to simulate real working conditions, 360° without dead angles, all-round dust invasion (Figure 2). The dustproof test simulates multiple application scenarios, fully fill the air with wood chips, iron filings and gravels and are strictly tested to ensure the quality and dustproof effect of each block. #### 2.4. Test result Figure3: Steel balls Figure4: Steel balls Result: It can be seen from the Figure 3 and 4 that little amount of dust enters the inside of the block after testing, and the steel ball surface is still smooth, the block still runs smoothly and the performance is not affected. Note: The above test results are obtained from AirTAC lab. # ${\bf 3.\, Dimensions}$ Highly dustproof type blocks have different length compared with the standard blocks (only dimension C is different from the standard, the others keep same), see the table on the right for details. | | | Length C(mm) | | | |---------|----------|--------------|--------------|-------------------| | Model | Type | Standard | Double oil | Oil scraper+Metal | | | | (Blank) | scrapers(DD) | scraper(ZZ) | | LSH15□N | Standard | 60 | 67 | 64.5 | | LSH20□N | Standard | 76.5 | 84.5 | 81 | | LSH20□L | Long | 90.5 | 98.5 | 95 | | LSH25□N | Standard | 83.5 | 91.5 | 88 | | LSH25□L | Long | 105 | 113 | 109.5 | | LSH30□N | Standard | 95.5 | 103.5 | 100.5 | | LSH30□L | Long | 118 | 126 | 123 | | LSH35□N | Standard | 109 | 118 | 114 | | LSH35□L | Long | 134.5 | 143.5 | 139.5 | | LSH45□N | Standard | 132 | 140.5 | 136.5 | | LSH45□L | Long | 163.5 | 172 | 168 | #### I SH Series #### Precautions on use #### 1. Block disassembly With ball retainers and a dustproof cover, normally the balls are prevented from falling out when block is removed from rail. However, if obliquely insert rail into blocks or quickly assembled or disassembled, there is a risk for balls of falling out. Please carefully assemble the linear guide or use plastic rails to assist. #### 2. Plastic rail installation A plastic rail is equipped for individual block set. Please do not remove plastic rail whenever it is not necessary. If plastic rail falls out and needs to be reinstalled, press the dustproof covers with fingers and install slowly to prevent balls from falling out due to misalignment of plastic rail. Press the dust-proof covers and insert plastic rail in alignment. Without pressing dust-proof covers or insert plastic rail obliquely. #### 3. Caution - Parts may slide out if linear guide is put unevenly. Please be careful. - Hitting or dropping linear guide could have huge effect on accuracy and lifespan even though appearance may remain intact. Please be careful. - Do not dissemble linear guide as external objects may enter blocks and cause accuracy problem. #### 4. Lubrication - Linear guide have been treated with anti-rust oil during production. Before use, wipe the rail and treat it with lubrication. - Do not mix lubricating oil (grease) with different properties. - After lubrication, move block back and forth for the length of three blocks long and repeat at least 2 times to ensure there is a grease file on rail. #### 5. Use - The operating environment temperature should not exceed 80°C, and the maximum temperature should not exceed 100°C. - Do not separate blocks from rail whenever it is not necessary. If you need to separate them, please use plastic rails to prevent steel balls from falling out. # 6 Storage • When storing blocks, rails or linear guide set, please be sure that anti-rust oil is well applied and product is well sealed as well as placed horizontally. Avoid humidity and high temperatures environment. # **AirTAC INTERNATIONAL GROUP** Europe Long-term Strategic Partnership for Global Automatic Equipment Manufacturers